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CHAPTER I. INTRODUCTION 

There is an increasing interest in the development of 

utility corporate models throughout the world for studying 

financial plans and system expansion plans. When one 

considers the rapidly changing spectrum of problems faced 

by utility system planners and managements, the need for 

development of these planning tools is almost self-evident. 

System expansion plans can no longer be viewed in isolation, 

but must be studied with the realization that these plans 

will effect the entire company and its financial needs and 

future structure. In recent years the financial constraints 

and realities of corporate existence have caused engineers 

to consider these aspects of their plans in addition to using 

their conventional economic evaluation procedures. The 

usual, or classical, measures of corporate economic and 

financial performance are revenue requirements and net income, 

respectively. Stable corporate performance with changing 

conditions and plans plus considerations involving the 

utility's liquidity (i.e., cash and investment) may be 

extremely important constraints in planning evaluation. Model 

studies of planning situation permit the incorporation of all 

of these important considerations. 

Many different model schemes and programs have been for

mulated. The major difference between various models appears 
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to be the degree of emphasis placed on modeling cash manage

ment. Utility finance officers seem to favor monthly fi

nancial models with more detail on short-term cash flows 

while engineering planners are more interested in the 

long-range aspects of their plans. Both types of models have 

their place and both have been effectively used for planning 

evaluations. The difficulty with the monthly model is in 

the detail of input required and the time and effort necessary 

to establish a model. Long-range models do not provide the 

necessary information needed for cash flow. 

This research describes a new approach to long-range 

utility coporate models designed specifically to facilitate 

use in planning situations. The model is written to minimize 

the detail of input data required and to facilitate com

parison between alternative plans. 

It must be remembered that the use of mathematical 

models is only a part of an overall set of approaches that 

have an effect upon managerial actions. So, despite the 

great amount of research accomplished in the area of mathe

matical models, it should be emphasized that models are not 

very useful except when used in conjunction with a broader, 

comprehensive approach to decision analysis. 
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Multiple Objectives in the 
Decision Process 

Traditional economic theory presumes that the decision

maker is rational. Thus, when the decision-maker is placed 

in a profit making setting, economic factors alone supposedly 

motivate him. Today, researchers see the decision-maker as 

one who must perceive the alternatives available, assign some 

system of payoffs to these alternatives, and be able to 

decide which of these sets of payoffs is best for the firm. 

This process is often complicated by the existence of 

multiple, conflicting objectives. In determining the pay

offs available from the various alternatives under considera

tion, it should be realized that complete attainment of objec

tives is usually not possible. Consequently, selection of 

alternatives becomes much more difficult. Therefore, the 

existence of multiple objectives affects the decision-making 

process in any organization. 

Although the supposed objective of a profit-making 

enterprise is often expressed as that of maximizing either 

profit or shareholders' wealth, in practice the existence of 

other objectives may be as important.- if not more so. Poque 

and Lall (1974) conducted a study suggesting that the ob

jectives of a firm are many and that profit, the traditional 

economic objective, is not the most important. In their 

study, for example, social responsibility and the desire to 
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satisfy the customer preceded the profit motive. The authors 

also concluded from their research that tools involving single 

criteria are not adequate and that multi-objective models need 

to be developed. Similarly, in their work on behavioral 

theory as it applies to the decision process, Cyert and March 

(1963) provide a clear picture of the importance of dealing 

with multiple conflicting objectives. Their theory of the 

firm regards decision-making not so much as an optimizing 

process, but rather as one in which a set of constraints 

is satisfied to produce goal attainment. Cyert and March 

identify five major goals of the firm-production, inventory, 

sales, market share, and profit. The decision process, then, 

undertakes to satisfy these goals. This approach contrasts 

somewhat with the traditional economic theory of profit maxi

mization, and it presents a more realistic picture of the 

problems faced by organizations. These studies indicate the 

necessity of recognizing the existence of multiple objectives 

in the decision-making process. 

Uniqueness of a Public 
Utility 

That an energy crisis exists is easy to claim. Just i. 

what the problem is, can be more difficult to argue. The 

United States is consuming about 90 QUADS (90 x 10^^ Btu) 

per year and domestically producing about 65 QUADS (Bailey, 
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1978) . This represents a shortfall of almost 1/3 of our 

needs. By 1990, the United States will demand 145 QUADS 

and produce only 90. Thus, the demand is growing at a rate 

of about 4% per year while supply is growing at only 2.5% 

per year. 

There are a wide variety of technological fixes to the 

supply problem. The United States can burn more coal, find 

more gas, create safe ways to use nuclear power, and harness 

the sun. All of these options require huge outlays in capi

tal dollars. In Table 1.1 the forecasted demand for capital 

needed by the electric industry is shown. At present, that 

industry consumes about 20 billion dollars per year. This 

represents 12 percent of the nonresidential investment 

capacity of the U.S. By the year 2000, Table 1,1 suggests 

the electric generating industry will require 60 billion 

dollars which is 20 percent of extrapolated U.S. capacity. 

In Iowa this represents construction of approximately 25 

new medium-sized power plants with a cost of 12 billion 

dollars. 

For public utilities, regulation has led to a modifi

cation of traditional approaches to capital budgeting. In 

the "traditional view" of the capital budgeting process, the 

firm takes on projects so long as their rate of return 

exceeds the cost of capital. According to traditional 

regulatory theory, this conceptual model is not generally 
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Table 1.1. Forecasted annual capital expenditures for the 
electric power industry in millions of dollars 
(Bailey, 1978) 

Year Dollars^ 

1976 21,196 

1977 20,802 

1978 22,031 

1979 21,889 

1980 24,383 

1981 25,687 

1982 27,088 

1983 29,154 

1984 31,386 

1985 31,848 

1986 35,486 

1990 43,427 

1995 52,889 

^All figures in 1976 dollars. 

applicable to utility companies. In the regulatory process, 

a target,- or allowed rate of return,- is specified = This 

return is either implicitly or explicitly, recognized as 

being a point (perhaps midpoint) within a range of rates 

of return frequently called the "zone of reasonableness". 

If "good" capital investments cause the actual rate of return 
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to exceed the upper end of this range, then a rate reduction 

is ordered to drive rates back down to the target. 

Figure 1 .1  shows the rate of return pattern facing a 

typical utility company when: 1) inflation is driving costs 

up constantly, 2) prices, which are set by regulatory action, 

are increased at discrete intervals, and 3) regulatory lag is 

present.. At point A the actual ROR (rate of return) pene

trates the lower control limit, prompting the company to 

ask for a rate hearing, which occurs at point B. At point 

C an order is issued permitting the company to raise rates 

and the rate increase takes effect at point D. The actual 

ROR does not return to the target level. The cost figures 

generally used in the point B rate cases are those of the 

most recent past year. If inflation continues, by the time 

the new rates take effect, the cost figures are outdated. 

Hence, the calculated utility rates are too low to return 

the ROR on investment to the target level. 

Brigham and Pettway (1973) conducted a survey of 

capital budgeting by utilities. The results indicated that 

40% of the companies surveyed have been subject to capital 

rationing. Of the firms, 89% indicated that in response to 

funds shortage they would apply for a rate increase. The 

utilities were questioned about their divided policies. 

According to the respondents, only about one-third of the 
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UPPER CONTROL LIMIT 

ALLOWED RATE OF RETURN 

& LOWER CONTROL 

i m  

Figure 1.1. Rate of return under inflationary conditions 
with regulatory lag 
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utility companies' dividend policies are adjusted to changing 

investment opportunities or capital market conditions. 

Under inflation the established pattern of rate regu

lation has not worked out as utility theory assumes, and, 

as a result, the utility companies have been placed in a dif

ficult position. On the one hand, they must make whatever 

investment is necessary to meet service demands. At the 

same time, the companies must generate the cash necessary to 

maintain the current dividend policy. 

Research Objectives 

The purpose of this research is to develop a goal pro

gramming model for electric utilities and to demonstrate 

its application potential to managerial decision-making. 

In presenting the model, the approach adapts methods al

ready developed for electrical expansion models. 

The dissertation consists of six chapters. Chapter I 

has discussed the importance of developing a goal programming 

model for an electric utility. A brief review of the 

literature for both goal programming and expansion models 

for electric utilities is contained in Chapter II. Chapter 

III presents the goal programming model that has been adapted 

to utility expansion planning. A solution procedure, in

cluding a computer program, for goal programming is presented 

in Chapter IV. Chapter V contains the results of applying the 
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model under various assumptions. As is traditional, Chapter 

VI discusses conclusions reached and makes suggestions for 

further research. 
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CHAPTER II. LITERATURE REVIEW 

Literature pertaining to this research can be convenient

ly divided into two categories: 1) Multiple Objective 

Programming, and 2) Studies Related to Investment Planning 

and Utility Expansion. 

Multiple Objective Programming 

Multiple objective programming deals with optimization 

problems with two or more objective functions. The general 

form with n decision variables, m constraints and k objec

tives is 

Minimize [Z^(x^,x2,••-,x^), 

^^2^^1'^2'***''^n^'***' (2.1) 

r *? / "V ^ \ 1 
/J 

fL _L ^ 1 1  

subject to 

f.(x,,x„,...,x ) > 0 i = 1,2,...,m (2.2) 
1 1 /  n  —  

Xj ̂  0 j = 1,2,... ,n 

where Z^(*)/ Z2 ( • ) f • • • >( • ) are the k individual objective 

functions. Note that the individual objective functions 

are merely listed in (2.1); they are not added, multiplied, or 

combined in any way. The method of solution can best be 
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described by the information flows in the process. Infor

mation flows are important because they determine the role 

that the analyst must play in the planning process. 

For purposes of this research, it is sufficient to 

conceive of two types of information flows: 1) from 

decision-maker to analyst ("top-down") and 2) from analyst 

to decision-maker ("bottom-up"). The decision-maker-analyst 

flow occurs when decision-makers explicitly articulate 

preferences so that a best-compromise solution may be identi

fied. This is referred to as goal programming. The analyst-

decision-maker flow contains results about noninferior alter

natives, their impact on the objectives, and the tradeoffs 

among the objectives. This is called generating techniques. 

Iterative Techniques 

Generating techniques emphasize the development of in

formation about a multiple objective problem that is pre

sented to a decision-maker in a manner that allows the 

range of choice and the tradeoffs among objectives to be well-

understood. The information flow is of the bottom-up variety. 

Analysts apply a generating technique to find an exact repre

sentation or an approximation of the noninferior set (Cohen, 

1978) . 

Optimality plays an important role in the solution of 

single-objective problems. It allows the analyst and 
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decision-makers to restrict their attention to a single 

solution or a very small subset of solutions from among 

the much larger set of feasible solutions. A new concept 

called noninferior will serve a similar but less limiting 

purpose for multiple objective problems (Klahr, 1958). 

The idea of noninferiority is very similar to the con

cept of dominance. Noninferiority is called "nondominance" 

by some mathematical programmers (Hannan, 1978), "efficiency" 

by statisticians and economists (Dyer, 1972) , and "pareto 

optimality" by welfare economists (Cohen, 1978). Suppose 

three solutions in a two-objective problem are given as in 

Table 2.1. Alternative C is dominated by A and B because 

both of these alternatives yield higher values of both ob

jectives, and . A solution that is dominated in this 

manner is termed inferior. Solutions that are not dominated 

are noninferior. Thus, for example, alternatives A and B 

in Table 2-1 are noninferior. To get a bit more formal, 

noninferiority can be defined in the following way: 

Table 2.1. An example of noninferiority 

A 20 15 Noninferior 

B 22 11 Noninferior 

C 12 8 Inferior 
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A feasible solution to a multiple objective program
ming problem is noninferior -if there exists no other 
feasible solution that will yield an improvement in 
one objective without causing a degradation in at 
least one other objective (Luenberger, 1969) . 

In recent years the problem of generating a subset of 

the noninferior solutions has been approached from the 

viewpoint of vector function minimization (Philip, 1972). 

Evans and Steuer (1973) used the revised simplex method for 

generating the noninferior set. These methods are based on 

parametric considerations. 

Zeleny (1974) developed a multicriteria simplex method 

for generating all noninferior solutions from a given set 

of nondominated extreme points. 

Preference-oriented Techniques 

Techniques that incorporate preferences share the 

analytical goal of the generating methods: analysis of a 

multiple objective problem without explicit consideration 

of the political dynamics of the problem. Unlike the 

implicit treatment of preferences by the generating methods, 

however, preference-oriented techniques require that 

decision-makers articulate their preferences and pass that 

information on to the analyst. The two basis methods 

for articulation of preferences are noniterative and itera

tive approaches. Goal programming is an example of the 

former and the step method is an example of the latter. 



www.manaraa.com

15 

The concept of goal programming was first introduced 

by Charnes and Cooper (1961) as a means of treating linear-

programming problems with multiple conflicting objectives. 

In their approach, the researchers recognized that complete 

goal attainment is not always possible. Since such a condi

tion indicates that no convex set exists, the authors sug

gested a scheme to incorporate deviations from goals into a 

linear programming objective function witL the goal of 

minimizing these deviations. 

Unfortunately, the notation used by those involved in 

goal programming is, by no means, standardized. The 

general goal programming mathematical model is expressed in 

the following notation (Ignizio, 1978): 

Find X = Xw . . . ,x.,... ,XT so as to minimize: 
i 3 J 

â = {g^(n,p) ,. .. ,gj^{n,p) ,... ,gj^(n,p) } (2.3) 

such that : 

f\(x) + ~ ^i ~ ̂ i i = l,...,m (2.4) 

and 

x,n,p ̂  0 (2.5) 

where : 

Xj is the jth decision variable, 

a is denoted as the achievement function; a row 
vector measure of the attainment of the objectives 
or constraints at each priority level, 

g, (n,p) is a function (normally linear) of the devia
tion variables associated with the objectives 
or constraints at priority level k. 
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k is the total number of priority levels in the 
model, 

b^ is the right-hand side constant for goal (or 
constraint) i, 

f.(x) is the left-hand side of the linear or nonlinear 
goal or constraint i, 

n^ is the negative deviation from goal i, and 

p^ is the positive deviation from goal i. 

Under such a formulation, given any type of goal or 

constraint, it is desired to minimize the nonachievement 

of that goal or constraint by minimizing specific deviation 

variables. Table 2.2 summarizes the approach taken to 

accomplish this desire. 

Table 2.2. Model formulation 

Goal or Processed goal Deviation variables 
constraint type or constraint to be minimized 

f^(x) l^i f.(x)+n^-p^ = b. 
1 Pi 

f^(x) l^i f.(ïï)+n.-p. = ^i "i 

f^(x) = ^i f.(5)+n.-p. = ^i Hi+Pi 

The deviation variables at each priority level, k, are 

included in the function g^(n,p) and ordered in the achieve

ment vector a, according to their respective priority. 

Developments in goal programming were made by Ijiri 
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(1965). Although Ijiri's work was more directly concerned 

with the field of accounting control, it resulted in several 

contributions to the study of goal programming. One of 

these was the idea of preemptive priority factors in a linear 

programming format. In this model, the deviations from 

goals, as ranked by the priority factors, are minimized 

in the solution process. Secondly, Ijiri proposed the 

generalized inverse method as a solution technique. In this 

technique, the square root of the sum of squares of goal 

deviations are to be minimized. 

Although Ijiri proposed the general inverse procedure 

as a solution method for goal programming, it was not until 

Lee (1972) developed the modified simplex technique that 

goal programming found an efficient solution method. In 

this method, the basic simplex procedure of linear pro

gramming is utilized to minimize the deviational variables 

of the goal. Deviational variables are ranked according to 

preemptive priority factors so that during the solution 

process the goals are considered in order of their priori

ties. In addition, a weighting method is allowed to in

corporate cardinal values to goals at a given priority level. 

A computer program for the modified simplex method of goal 

programming has been widely used. 

Much of the recent work in goal programming has been in 
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the area of applications. The earliest application was a 

study of advertising media planning by Charnes, Cooper, 

De Voe, Learner and Reinecke (1968) . in this model, goals 

were established for percentages of audience segments 

reached by different types of advertising. 

Lee and Nicely (1974) presented a case study demon

strating how goal programming may be used in market planning. 

The subject of the case was color television sets. The model 

analyzed the effects of promotion on rates of return, the 

number of television sets leased and personnel policies. 

Several goal programming studies have been made in 

the area of financial decision-making. In a capital bud

geting application, Lee and Lerro (1974) pointed out the 

advantages of incorporating multiple objectives in the selec

tion of capital investments. Taylor and Keown (1978) 

formulated a goal programming model for project selection 

where both profit and nonprofit motivated projects are in 

competition for scarce resources. 

A comprehensive list of areas where goal programming 

has been applied can be found in Kornbluth (1973) and 

Ignizio (1978). 

Procedures that incorporate preferences operate with 

local approximations of a decision-maker's preferences. The 

locally approximated preference information is articulated 

by the decision-maker in response to local information about 
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the noninferior set generated by the analysis. Benayoun, 

de Montgolfier and Tergny (1971) developed the step method. 

The linear multiple objective program is optimized with 

respect to each goal individually. The decision-maker 

and the analyst determine the appropriate goals to relax 

until a satisfactory solution is obtained. The decision rule 

is to minimize the maximum deviation from the best possible 

goal. 

Investment Planning 

Project planning is concerned with choices among alterna

tive investment opportunities. These investment opportuni

ties include not only business decisions, such as which plant 

to build and hence, which new technology to adopt, but also 

the amounts to be spent by government on roads, education, 

research, military facilities and the like. 

One of the earlier works dealing with capital budgeting 

was a linear programming model by Weingartner (1963). His 

model employed an objective function composed of net present 

values of investment proposals from which will be selected, 

under constrained financing, that combination bringing the 

highest return to the firm. 

Baumol and Quandt (1965) developed a seemingly dif

ferent programming model which attempted to maximize share

holder wealth by providing the investor with an optimal 
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dividend stream. This implies an objective function where 

future dividend payments are discounted using marginal 

utility as the appropriate discount factor and available cash 

as the constraint. Despite the introduction of utility, 

Meyers (1974) demonstrated that there is little difference in 

meaning between this model and Weingartner's model. 

Since the problem of capital budgeting is one that af

fects the entire structure of the modern corporation. Spies 

(1974) formulated a model which incorporates the dynamic 

nature of the problem. The capital budget was broken down 

into five basic components; dividends, short-term invest

ment, gross long-term investment, debt financing and new 

equity financing. 

The previously described models avoided a more realistic 

model of the capital budgeting problem. The reason is that 

such traditional formulations are restricted to the con

sideration of only a single objective function whereas, in 

most real-world problems there are usually several, conflic

ting objectives that are desirable to the decision-maker. 

A representative sample of the goal programming models for 

capital budgeting are: Hawkins and Adams (1974); Ignizio 

(1976a); Keown and Martin (1977 and 1978); Lee and Lerro 

(1974); Sartoris and Spruill (1974); and Taylor and Keown 

(1978). 
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Bussey (1978) demonstrated all the models are only cor

rect under the assumption of perfect capital markets which are 

summarized as follows: 

1. financial markets are perfectly competitive; 

2. there are no transaction costs; 

3. information is complete, costless and available to 
all; and 

4. all individuals and firms are able to borrow and 
lend on the same terms. 

It is the fourth assumption which causes the failure of the 

net present value criterion. However, Bussey did demon

strate that a goal programming model would still be valid. 

Bernhard (1971) and Cooley, Roenfeldt and Chew (1975) 

identified the discount rate as a second problem with Wein-

gartner's and Baumol and Quandt's models. With capital 

rationing and inflation, the same discount rate can not be 

used for the planning horizon. 

The models used in the optimal expansion of an electri

cal supply system can be classified as mathematical pro

gramming models covering a particular subsystem. Generating 

facilities are the most frequently considered subsystems. 

Bessiere (1970) formulated a nonlinear model while Juseret 

(1978) solved the optimization problem using convex pro

gramming. 

Le (1977) formulated a large scale chance-constrained 

linear programming model to determine the optimal expansion 
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over a planning horizon. Petersen (1973) attacked the same 

problem using a dynamic programming methodology. 

Shelton (1977) constructed a mixed integer programming 

model to determine the optimal expansion of a distribution 

subsystem. 

Anderson (1972) provides an excellent state-of-art dis

cussion of the various models used in the planning of the 

expansion of a power system. He illustrates several models 

which could be used. The models possess two characteris

tics: they only investigate a subsystem and they use a net 

present value as the criterion for the objective function. 
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CHAPTER III. A GOAL PROGRAMMING MODEL FOR 

ELECTRIC UTILITY PLANNING 

Planning may be defined as formulating, evaluating and 

choosing between the various courses of action being con

sidered. In an electrical supply system this process con

sists primarily of determining the sequence of expansion 

with regard to generating units, transmission lines, trans

formers, circuit breakers and other major plant components. 

The course of action must be determined in such a way that 

the system is in a position to meet future electrical demands 

with an adequate security'of supply combined with the lowest 

possible capital and operating costs and with existing fi

nancial options duly taken into account. 

The planning of the electrical supply system raises 

special problems. Plants must continually be installed to 

meet the increasing demand for electricity but capital 

requirements for expansion are very large. The "leadtime" 

required between making the decision and the commissioning of 

a plant is relatively long. The potential capacity available 

from the supply system must exceed the simultaneous sum of 

the consumers' demands at all times if restrictions are to be 

avoided. Abnormalities developing in one part of the system 

are immediately felt to a greater or lesser extent throughout 

the system. In the planning of an electrical supply system 
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expansion critical issues are encountered such as increasing 

capital costs, financial and environmental restraints, and 

increasing fuel costs. If these issues are compounded by the 

effects of changing technologies and the limited avail

ability of resources, it becomes clear that a comprehensive 

analysis of the future outlook for an electrical supply 

system is an enormously complex undertaking. 

In general, the aim of power system planning is to 

provide a pattern of expansion which will ensure that suf

ficient plant is available to supply the forecasted load 

with an adequate level of reliability, and that this pattern 

of expansion is the lowest cost alternative of those avail

able. 

Brigham and Pettway (1973) demonstrated that a utility 

is confronted with the conflicting goals of consumers' de

mand and stockholders' dividend= This tradeoff between timing 

of investments and replacements versus maintaining dividends 

at a constant rate is represented in a goal programming 

framework. 

Goal Programming 

That organizations have a number of objectives is 

commonly accepted. Moreover, problems arise because these 

objectives often conflict. Thus, achievement of some objec

tives may be possible only by not attaining others. In 
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mathematical terms, no convex set of feasible solutions 

exists. Goal programming offers one method of resolving 

these conflicting objectives. The technique has been ac

cepted by academicians and practitioners as a major quanti

tative tool to be used in the treatment of multiple objec

tives. 

The general model for a goal programming problem 

follows : 

Minimize a = {g^(n,p) ,g2 (n,p) ,... ,gj^(n,p) } (3.1) 

subject to 
n 
Z  a . . x .  + n . - p .  = b .  i = l , 2 , . . . , m  ( 3 . 2 )  

j _ l  1 ]  ]  1 1  1 

x.,n.,p. > 0 
3 1 1 -

where 

n^ is the negative deviation variable, 

p^ is the positive deviation variable, 

g, (n,p) is a linear function of the deviation 
variables, 

a is an_ordered vector whose components are the 
9k(n,P) functions, 

a . .  i s  t h e  c o e f f i c i e n t  o f  x .  i n  g o a l  i ,  a n d  
ij ] 

b^ is the right-hand-side value of goal i. 

In the solution process of goal programming, it is im

portant to understand that the goals are not necessarily 

being optimized, but, rather, are being satisfied. Of 

course, goal programming can be so formulated to achieve an 
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optimization. This is different in concept from linear 

programming where the single objective function is opti

mized to get the "best" solution. In real world situations, 

however, the typical decision problem may in fact be to 

operate within a rather narrow set of (possibly incompatible) 

constraints, and linear programming cannot handle this type 

of problem on a satisfactory basis for several reasons. 

First, linear programming does not easily allow an exact 

ordinal ranking of objectives. This may be achieved only 

by arriving at a system of weights for the various goals. 

However, arriving at this set of weights is difficult, and 

of course the approach contradicts the spirit of an ordinal 

ranking of priorities (Lee, 197 2). Also, unless these goals 

are incorporated into the objective function rather than 

the constraint set, infeasibility may result, which renders 

a solution impossible. Zeleny (1974) offers a contrasting 

approach for the solution of goal programming problems. 

Here, a linear programming solution is used where the ob

jective function is composed of a set of objectives with a 

constraint set similar to linear programming. 

Another major disadvantage of linear programming is the 

unidimensionality of the objective function (Lee, 1972). 

That is, the objective function must be expressed in terms 

of the same units, whether dollars or hours, since strict 
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comparability does not exist among quantities expressed in 

dissimilar units. On the other hand, in goal programming, 

the objective function tries to satisfy the constraint 

set, which may be composed of any quantifiable measurements. 

Thus, it does not present any difficulty if some goals 

are expressed in terms of dollars or hours while others are 

in units of output. 

In decision analysis applying goal programming, the 

decision-maker must decide upon his ordering of priorities 

and be able to express them in quantitative terms. For 

example, he may decide that stabilization of employment is 

preferable to meeting a certain level of profit. If this is 

the case, he would try to attain a specific employment level 

at a higher priority than the profit goal. Using priority 

levels that differ forces the solution process to consider 

the goals on an ordinal basis, so that the employment level 

is achieved as nearly as possible before the profit is 

considered. Yet, goal programming is flexible enough to 

accommodate a cardinal ranking if it is desired. 

Perhaps the most difficult part of the process occurs 

in determining the priority structure of the goals. This is 

the responsibility of the decision-maker. However, an im

portant part of the goal programming process is to evaluate 

goal underachievement after a solution is reached. Thus, 

the soundness of the decision-maker's priority structure can 
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be explicitly evaluated. Three types of solutions can be 

attempted in the goal programming model: 1) the amount of 

resources required to attain the desired goals; 2) the 

level of goal attainments using the given resources; and 3) 

the level of goal attainment under varying goal requirements 

and resource capabilities (Ignizio, 1976). Using this in

formation, it is relatively easy to analyze the effects of 

changes upon the system. 

Mathematical Model for Electric 
Utility Planning 

In the past decade numerous attempts have been made to 

apply mathematical optimization and simulation methods in 

the development of models for planning the expansion of the 

electricity supply system (Anderson, 1972; Bessiere, 1970; 

Jusseret, 1978; and Petersen, 1973). Presently, there is 

no electrical supply undertaking of any size which does 

not use mathematical models for carrying out generation 

planning, transmission planning and financial planning. Most 

of the models are characteristically developed and used for 

solving specific planning tasks for a subsystem. Hence, the 

solution obtained may correspond to sub-optima], solutions. 

The modeling system described here forms a framework for the 

discussion of the principles of planning an integrated 

electrical supply system is given in Figure 3.1. This figure 
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POWER PLANT 

Figure 3.1. Electrical supply system 
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represents a typical electrical supply system. As illus

trated, the system is composed of two generating plants, 

of four substations, and of six customer demand areas. 

The load duration curve is a device used in electric 

utility industries to show the number of hours for a period 

of time, say a year, that various loads are served. 

The calculation of optimal operating schedules and costs 

is complicated by the variance of power demand, which varies 

throughout the day and year (Figure 3.2). The operating 

costs are the area under this curve weighted at each time 

interval, w^, by the fuel costs and the output of the 

plant during that interval. Usually the calculation of 

operating costs is simplified by constructing a curve known 

as the load duration curve. This curve is constructed from 

the demand curve (Figure 3.2) by rearranging each load for 

each time interval w^ to occur in descending order of magni

t u d e  ( F i g u r e  3 . 3 ) .  

The load duration curve makes integration of cost easier 

because it can be represented by a simpler function than the 

c u r v e  i n  F i g u r e  3 . 2 .  



www.manaraa.com

31 

REQUIRED 
CAPACITY 

TIME 

Figure 3.2. Power demand 
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1 YEAR 

Figure 3.3. Load duration curve 
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Description of the Goal 
Programming Model 

Before discussing the decision variables and the 

constraints in the model, several assumptions about the 

system are listed as follows: 

1. The quantities demanded are assumed to be exo-

geneous. This is the most practical way to treat 

interactions of demand and supply when formulating 

an investment program. 

2. The formulation is deterministic. Allowances are 

made for uncertainties in demand and plant avail

ability, but in the simple form of margins of 

spare capacity. 

3. There is no discussion of terminal conditions. 

4. Finally, the electricity supply system is assumed 

to be operating in a stable condition. That is, 

there are no transient or maintenance conditions 

that would cause downtime. 

The subscripts (lower case) and decision variables 

(upper case) used in this model are as follows: 

1 - load area (1 = 1,-2,. = = ,-L) 

f - type of fuel (f = 1,2,...,F), 

k - type of plant (k = 1,2,...,K), 

y - years in study (y = 1,2,...,Y), 
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s - each period y is divided into s = 1, 2 , . . . , S 
subperiods (seasons), 

d - demands in each period s (d = 1,2, 

n - numberof substations (n = 1,2,,..,N), 

m - type of transformers (m - 1,2,...,M), 

c - number of feeder circuits at substation n 
( c  1 , 2 , . . . , C ) /  

P ~ type of pollution discharge (p = 1,2,...,P), 

V - vintage of a power plant or a transformer (v = 
0 , l , . . . / y ) ,  

PS - installed plant size of a power plant, (kw) 

OC - operating capacity of a power plant in year y 
(kw) 

GO - generated output of a power plant (kw), 

TC - transmission capacity of a power plant (kw), 

FC - fuel consumed at a power plant (Btu), 

NT - new transformers installed at a substation (MVA), 

RT - removed transformers at a substation (MVA), 

CD - cash dividends paid to stockholders (constant 
dollars), 

CB - cash borrowed by the firm (constant dollars), and 

CL - cash lent by the firm (constant dollars). 

As an example, these subscripts and decision variables would 

be combined in the following form: 

F C ( f , k , v , d , s , y )  -  t h e  q u a n t i t y  o f  f u e l  f  c o n s u m e d  a t  
plant k, vintage v, month d, season s, 
and year y. 
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The input data that the decision-maker must provide is 

follows; 

LAD - load area demand (kw), 

MT - maximum size of transformers at each substation 
(MVA) , 

FCC - feeder circuit capacity at each substation (kw), 

e - energy conversion of fuel into electrical energy 
(kw/Btu), 

df - pollution discharge factor from fuel (particle/ 
Btu), 

FL - limitations on fuel available (Btu), 

EP - environmental pollution limit (particles), 

w. - width of time interval of block d on the load 
duration curve, 

CCP - cash cost per unit of initial capacity of a power 
plant (constant dollars/kw), 

CCT - cash cost per unit of transformer capacity at a 
substation (constant dollars/kw), 

PC - production costs (excluding fuel costs) per unit 
of energy output (constant dollars/kw), 

CT - cash cost per unit of transmission capacity 
(constant dollars/kw), 

OF - cash cost per unit of fuel consumed, units 
(constant dollars/Btu), 

COE - cash operating expenditures (constant dollars), 

COF - cash operating fuel expenditures (constant 
dollars) , 

COP - cash operating pollution expenditures (constant 
dollars), 

MC - minimum fixed cash balance (constant dollars) , 
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CA - cash available (constant dollars), 

BL - borrowing limit (constant dollars), 

1 - lending rate (decimal), and 

b - borrowing rate (decimal)^ 

The constraints are divided into three sections. The 

first 8 restrictions applied to the power plants; while the 

next 5 constraints are applicable to the substations. The 

final set of 5 constraints are the financial constraints. 

1. Operating capacity of a power plant in year y must 

be less than installed plant size. 

y = 1 ï (3-3) 

V  =  1 , . . . , y  

k — 1, « . ., k 

2. Operating capacity in any year must be less than 

the operating capacity in the previous year. 

°Ck,v,y+l 1 OCk,v,y y = l, . . . , Y  ( 3 . 4 )  

V  =  1 , . . .  , y  

k  =  1 , . . . , K  

3. Generated output must be less than its operating 

capacity 

L 

'  1 = 1 ^ ° " ' ' ' ' - ' ^ ' " ~  ^ k , v , d , s , y  ° ^ k , v , d , s , y  

for k = 1,...,K 
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d  =  1 , .  . . ,D 

T 1 
II W

 . . ,S 

y  =  1 , .  . . , Y  

0  < a k , v  < 1 
, d , s , y  

Operating capacity must be greater than the peak 

load required at a substation by a margin g^ 

v=l k=l v!iGOk,v,n,d,s,y 

(3.6) 

for d = 1 (peak) 

s  =  1 , . .  . ,  S  

y = 

0 < gy < 1 

Transmission capacity between power plants and 

substations must be sufficient to carry peak load 

by a margin h^ 

il i jr^,v,n,d,s,y <3-') 

for n = 1,...,N 

d = 1 (peak) 

s  =  1 , . . . , S  

y  =  1 , .  .  . ,  Y  

0 < hy < 1 
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Conversion of fuel into electrical energy must be 

greater than the generated output 

, k , v ^ ^ f , k , v , d , s , y  -  n = i ^ ° k ' V , n , d , s , y * d  

for k = 1,...,K 

V  =  1 , . . . , y  

d  =  1 , . . . , D  

s  =  1 , . . . , S  

y  =  1 , . . . , Y  

Amount of fuel f consumed must be less than than 
the available supply for each w^, s, and y. 

For ^d = 

y K 
E E FC 

V=1 

r—
1 f , k , v , d , s , y  -  ̂^ f , d , s , y  i ^ ' ^ )  

for f = 1,...,F 

d  —  l / > . « / D  

s  =  1 , . . . , S  

y  =  l f " « » f Y  

For period s; 

vl kil a=/'^f.I=,v,d,s,y 1 

for f = 1,... ,F 
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For period y; 

s=1 a=i v=1 k!ifcf,k,v,a,s,y - 3=1 

( 3 . 1 1 )  

8. Pollution particles (p) must be less than an 

upper limit that may be harmful to the environment 

during each w^, s, y. 

For w^; 

y K F 

v=l k=l f=i^^^f,k'V,d,s,y^ff,p,k,v,d,s,y -  ̂ ^p,d,s,y 

( 3 . 1 2 )  

for p = 1,. .. ,P 

d  =  1 , . . .  , D  

s — 1 f « « « y S 

y = if...,Y 

for S; 

y K F D 

v=l k=l f=l a=i^^f'k'V'd ' S , y ^ ^ f , P , k , v , d , s , y  

i J/^p,a,s,y 
for p = ly...,P 

s —  l ; o o s /S 

y  =  1 , . . . , Y  
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For y: 

y K F D S 

v=l k=l f=l  d = l  s = l  f , k , v , d , s , y  f , p , k , v , d , s , y  

- s?i 

for p = 1,...,P 

y  =  l / . a . f Y  

Transformer capacity must be greater than the circuit 

loads at each substation. 

y N M 

v=l n=l m=l/^^m,n,v,d,s,y *^m,n,v,d,s,y 

^'^m,n,v,d,s,y^ -  ̂ ^l,d,s,y (3.15) 

for 1 = 1,...,L 

d — 1 f . . . y D 

s  —  l / . . . f 5  

y  —  l f » . » / y  

The number of transformers at a substation must be 

less than the allowed maximum number. 

M 
Z (NT -RT +ET ) 

m , n , v , d , s , y  m , n , v , s , y  m , n , v , d , s , y '  
m-

^"'n,v,d,s,y 
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for n = 1,...,N 

V =  1 , . . . , y  

d  =  1 , . . . , D  

s = 

y = 

11. A nonexistent transformer must not be removed 

y 
S fNT —RT +ET 1 > 0 

m , n , v , d , s , y  m , n , v , d , s , y  m , n , v , d , s , y ^  -

( 3 . 1 7 )  

for m = 1,...,M 

n  =  1 , . . . , n  

V  =  1 , . . . , y  

d  =  1 , . . . , D  

s  =  1 , . . . ,  S  

y  =  1 , . . . , Y  

12. A transformer must not be removed from a substation 

unless it is being moved to another substation. 

^^^[^^m,n,v,d,s,y ^'^m,n,v,d,s,y^ -  ̂  (3.18) 

for m = 1,...,M 

n  =  1 , . . . , N  

v  =  1 , . . . , y  

d  =  1 , . . . , D  

s  =  1 , . . . ,  S  

y  =  1 , . . . , Y  
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13. The circuit loads in each load area must be greater 

than the total load in the area. 

il Jl®^o,n,d,s.y i 

for 1 = 1,...,L 

d  =  1 ,  .  .  .  , D  

s  =  1 , . . .  , S  

Y  =  1 , . . .  , Y  

14. At time y: the net cash outflow to projects (new 

power stations and new transformers); minus the 

cash inflow from time y-1 loans; plus cash outflow 

from time y loans; plus the cash outflow for re

payment of time y-1 borrowing; minus the cash in

flow from time y borrowing; plus the cash outflow 

for time y dividends payment must be as a sum 

less than or equal to the cash available. 

— E -f CC pq 
k , v , s , d , n  k , v , s , d , y  k , v , s , d , y  

+ CNT NT } 
n , m , v , s , d , y  n , m , v , s , d , y  

- ly-ltCty-l+CyCBy-l+MCy-l) 

+ (CLy_ I+CyCBy+My) 

+ Vi™y-i " ^ ™y -

for y = 1,..., Y 

0 < Cy < 1 
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15. The cash operating budget must be less than the 

total budget in any year. 

k,v:d,s^^k,v,d,s,yG°k,v,d,s,y*d -  ̂ °®y (3.21) 

for y = 1,... ,Y 

1 6 .  T h e  c a s h  e x p e n d i t u r e  f o r  f u e l  m u s t  b e  l e s s  t h a n  

the total budget for any year. 

for y = 1,. .., Y 

1 7 .  T h e  c a s h  e x p e n d i t u r e  f o r  e n v i r o n m e n t a l  p r o t e c t i o n  

must be less than the total budget for any year. 

~  ( 3 . 2 3 )  

18. The cash borrowed in any year must be less than 

the borrowing capacity. 

cb < bly (3.24) 

for y = 1,. .., Y 

The model developed in Equations 3.3 through 3.24 can 

be used for any planning period that the decision-maker 

selects. For the system shown in Figure 3.1 and using a 

20 year planning horizon, the total number of constraints 

would be 14,204 and the model would contain 15,370 decision 

variables. 
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In mathematical programming there is usually one ob

jective function which the decision-maker either minimizes 

or maximizes. However, in goal programming, there is a 

series of objectives which the decision-maker ranks on an 

ordinal basis. For an electric utility, some of the 

goals might be as follows; 

1. Maintain a given debt ratio, 

2. Maintain growth in earnings, 

3. Maximize cash inflows, 

4. Spend a minimum amount on environmental protection, 

5. Minimize capital budget overruns, 

6. Minimize the fuel adjustment factor, 

7. Minimize cash operating expenses, 

8. Satisfy customer demands, 

9. Maintain a minimum level of plant operation, 

10. Minimize amounts of energy purchased, and 

11. Minimize excess liquidity. 

The decision-maker would then establish an aspiration level 

for each goal selected and an ordinal ranking of these 

goals. One possible ranking could be as follows; 

Priority 1; Goals 8 and 9, 

Priority 2: Goals 1, 2 ,  6 and 7, 

Priority 3: Goals 3, 4 and 5, and 

Priority 4; Goals 10 and 11. 
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Once the goals are ranked, the decision-maker would then 

form the achievement vector (Table 2.2). it should be re

called that the goals within a ranking must be commensurable 

but not across a ranking-

Model Characteristics 

The above goal programming model represents an electri

city supply system. The model includes the generating facili

ties, the transmission network, and the financial require

ments. The decision-maker has tremendous latitude in de

fining the scope of the major components. 

The model is ideally suited to investigate the trade

offs that occur from various rankings of the goals. This 

would be extremely beneficial in cases involving governmental 

agencies. This will be explored in a limited fashion in 

Chapter V= 
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CHAPTER IV. SOLVING GOAL PROGRAMMING 

MODELS 

Goal programming is a methodology that allows the 

decision-maker to explicitly state and examine the various 

alternatives that are available. The solution of these 

models is illustrated in this chapter, via an example. A 

new computer program, which uses the ideas of revised simplex 

and compact storage in computers, is developed. 

Formulation Example 

Ace Electronics Incorporated manufactures two types 

of stereo headsets. One headset, the Deluxe, requires 1 

hour in assembly, while the other, the Supreme, requires 2 

hours assembly time. The normal assembly operation is limi

ted to 40 hours per week. Marketing surveys indicate that 

no more than 30 Deluxe and 15 Supreme headsets should be 

produced each week. The net profit from the Deluxe model 

is $8 each and is $12 each from the Supreme model. 

The company president has stated the following objectives 

in order of priority: 

1. Maximize total profits, 

2. Minimize overtime operation of the assembly line, 

3. Sell as many stereo headsets as possible (this 
is not necessarily the same as maximizing profit). 
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The decision model is as follows: 

Find and so as to minimize 

a = {(P3+P4), (P2Îr (n^), (n^+l.S n^)} (4.1) 

such that: 

8x^ + izxg + n^ - p^ = 1000 

x^ + 2X2 + ng - P2 = 40 

C 

C 

1 

2 

+ - Pg = 30 

%2 + "4 - p4 = 

c 

c 
3 

4 
(4.2) 

where: 

Xj^ = number of Deluxe headsets, 

X2 = number of Supreme headsets, 

nj^ = the amount of underachievement of goal i, and 

Pj^ = the amount of over achievement of goal i. 

That is, the first priority is to satisfy the absolute 

objective of never exceeding demand through minimization of 

Pg and p4. Any solution in which both p^ and p^ are not 

zero is considered unimplementable. The second priority 

is given to minimization of overtime and is achieved by 

minimizing P2. The third priority is assigned to maxi

mizing profits (minimize n,). The fourth and final priority 

is to sell as many sets as possible by minimizing n^ and n^. 

Since Supremes receive 1.5 times the profit of Deluxe models, 

more emphasis is placed on the minimization of n^. 



www.manaraa.com

48 

Graphical Solution 

The four constraints are plotted as straight lines in 

Figure 4.1. Note that only the decision variables (i.e., 

and Xg) are used in the plot. However, the effect of 

an increase in any deviation variable (N^, N^, 

^2' ^3' is reflected by the arrows at each constraint 

line. The particular deviation variables to be minimized 

(i.e., those in the achievement vector) have been circled. 

The graphical solution is demonstrated in Figures 4.1 

through 4.5. An attempt is made to satisfy priority one 

goals. The solution space satisfying priority one is 

indicated by the cross-hatched area of Figure 4.2. Here 

both P^ and p^ are set to zero. 

Next, an attempt is made to satisfy the priority two 

goal without degrading the solution to priority one. This 

can be accomplished by setting P^ to zero. The solution to 

p r i o r i t y  l e v e l s  o n e  a n d  t w o  i s  g i v e n  i n  F i g u r e  4 - . 3 .  

If priority three is to be achieved, N^^ must be 

minimized. However,N^ cannot be set to zero as this would 

degrade the solution at both priority one and two. The 

solution minimizing N^ while not degrading P^ and Pg is 

given by point A in Figure 4.4. The value of priority level 

three at point A is 700, while the value at point B is 

7 4 0 .  

Finally to achieve (as close as possible) priority 4, 
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100 

20 30 40 50 60 70 80 90 100 110 120 130 0 

Figure 4.1. Graphical representation of formulation 
example 
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Figure 4.2. Solutions to priority level one 
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Figure 4.3. Solutions to priority levels one and two 
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Figure 4.4. Solutions to priority levels OOne , two, 
and three 
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and must be minimized, but notice is considered 1.5 

times as iiuportant. Consequently the final solution is the 

point shown in Figure 4.5. If was equal to zero, the 

solution for priority level three would be degraded. 

Therefore, Ace Electronics Incorporated should manufacture 

30 Deluxe headsets and 5 Supreme headsets per week. The 

firm would use no overtime and would receive $300 in profits. 

Revised Goal Programming 

The graphical procedure is limited to small problems. 

A revised goal programming (RGP) procedure, which is based 

on the revised simplex procedure (Evans and Steuer, 1973) , has 

been developed. Before considering the RGP procedure, define 

the following matrices; 

TW is a (kx2m) matrix composed of the weights given 
to the negative and positive deviates in the k 
priority levels, 

a is a (kxl) column vector composed of the values 
for the k priority levels, 

X is a ((n+2m)xl) column vector; the first n 
components are the decision variables; the next m 
components are the negative deviates; the last m 
components are the positive deviates, 

where : 

k  =  1 , 2 , . . . , K  ( p r i o r i t y  l e v e l s )  

m = 1, 2 , . . . , M (number of constraints) 

n  =  1 , 2 , . . . , N  ( n u m b e r  o f  d e c i s i o n  v a r i a b l e s )  

Then the goal programming model (Equations 3.1 and 3.2) can 
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FINAL SOLUTION 
{X, = 30. X. = 5) 

Figure 4.5. Solution to all priority levels 
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be written in the following form: 

^kxk ^kxn '^(kx2m) ^kxl 
— 

\xl" 
( 4 . 3 )  

^mxk ^mxn ^mxm ^mxi^ {_^ n+2m) xl^ b 1 mxl-

which has the following solution 

^kxl 

X (n+2m)xl 

^kxk kxm 

0 b~^ 
mxm mxm 

b"^b 

""kki" 

_^mxi^ 

( 4 . 4 )  

It should be noted that the elements in TW are the weights 
h 

of the basic variables in the TW matrix. It is only neces

sary to modify the usual simplex criterion of selecting the 

entering variable. The minimum ratio test remains in 

effect. The new rule is as follows: 

Select the first aj^; to minimize (attempt to force to 
zero). Select the nonbasic variable with the most 
positive coefficient to enter the basis. There must 
not be a negative coefficient, at a higher priority 
level, for the entering variable. Ties are broken 
arbitrarily. If all a^<0 or if no positive coeffi
cient exists, stop. 

At the beginning of cycle k, assume that B , the asso-

-1 
ciated basic solution Xg = B "b, and the data of the 

original problem (A, TW, b) are available. Cycle k pro

ceeds as follows; 
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1. Compute the achievement vector 

a = TW„B"^b (4.5) 

2. If all equal zero, stop. The current basic 

solution is optimal. 

3. If any a^>0, compute the coefficients of the 

nonbasic variables in the priority levels 

T W g B " ^ b  -  T W ^ g  ( 4 . 6 )  

4. For a^>0, select the nonbasic variable from (4.6) 

to enter the basis. Label that column s. 

5. Compute 

b b. 
^ = (4-7) 

Srs IS a.g 

where r denotes the leaving column. 

6. Update the new inverse matrix and basic solution. 

Return to step 1. 

The above steps will now be applied to the problem that 

was formulated at the beginning of this chapter. The nega

tive deviates will form the initial set of basic variables. 

The first cycle is: 
r~n 

1. a = tw„b~^b = 0 
1000 
5 2 . 5  
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3. twgb~^a-twjjg = 

0 

0 

12 

1 . 5  

0 

0 

-1 

0 

0 

-1 

0 

0 

• 1  

0 

0 

-1 

-1 

0 

0 

- 1 . 5  

4. For variable enters the basis. 

5. Determine the minimum ratio: (1000/12, 40/2, 15/1) 

6. Therefore, replaces and the new inverse 

matrix and solution are 

b'^ = = 
1 0 0 -If 

0 1 0 -2 

0 0 1 0 

0 0 0 1 

. 8 2 0  

b"^b = 10 

30 

15 

The second cycle is 

1.  a = TW_B ^b = 
b 

3. twgb-vlw^g 

~ 0 ~  

0 

8 2 0  

_ 30 

0 

0 

0 

0 

0 

0 

8 -12 -1 

0  - 1 . 5  0  

0 

•1 

0 

0 

-1 -1 

0 0 

0 12 

-1 0 
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4. For variable enters the basis. 

5. Determine the minimum ratio: (820/8, 10/1, 

6. Therefore x^^ replaces n^ and the new inverse 

matrix and solution is 

b-l = = 
1 -8 0 4 

0 1 0 -2 

0 -1 1 2 

0 0 0 1 

-1 B b = 

7 4 0  

10 

2 0  

15 

The third cycle is: 

1. a = TW^B -^b = 
3 

0 

0 

740 
2 0  

3. twgb a-tw^3 

0 

0 

- 8  

0 -1 

0 0 

4 -1 

_ i  _ n  R  n 

0 

•1 

8 

1 

-1 -1 

0 0 

0 -4 

_o 

4. For a^, variable n^ enters the basis. 
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5. Determine the minimum ratio; (740/4, 20/2, 15/1) 

6. Therefore, n^ replaces n^ and the new inverse matrix 

and solution are; 

b-1 = = 
1 -6 

C
M

 1 0 

0 0 1 . 0  0 

0 - 0 . 5  0 . 5  1 

0 - 0 . 5  - 0 . 5  0 

7 0 0  
B b = 30 

10 

15 

The fourth cycle is; 

1. a = TW„B~^b = 
D 

~ 0 ~  

0 

7 0 0  
15 

3. TWgB A-TW^g 

0 0 0 0 -1 -1 

0 0 0 -1 0 0 

-6 -2 -1 6 2 0 

. 7 5  - . 2 5  0 . 7 5  - . 7 5  - 1 . 5  

4. Since there are no possible entering variables for 

either a^ or a,, stop. The solution given in step 

6 of cycle 3 is the optimal solution. 

Using the concept of linked lists, a computer program 

was developed to solve goal programming models. 
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Linked Lists 

One of the main requirements for an efficient computer 

code is compact storage of the data. Linked lists are 

an efficient technique to accomplish this requirement. 

Linked lists enable the numerical values of the numbers to 

be stored in any order, the desired sequence of the numbers 

being determined by the linking technique. This linking 

procedure consists of allocating a storage location for the 

numerical value of each item and associating with this 

storage location the address for the numerical value of the 

next item. This technique was incorporated into the com

puter program and is illustrated by the following numerical 

example; 

ri.5 0 0 3l 
A = 0 

1.2 

1.3 0 

2 

-7 

The coefficient matrix A can be stored in a compact 

form using the linked lists techniques. In this case four 

arrays are necessary, these being VALUEA (numerical value of 

element in matrix A), IROWA (index row), ICAPA (index of 

column address pointer),and NOZEA (number of nonzero 

elements in each column of A). The four arrays are 

illustrated in Table 4.1. Any column of matrix A can be 
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Table 4.1. Storage of the A matrix 

Location 1 2 3 4 5 . 6 7 8 9 

VALUEA 1 . 5  1 . 2  1 1 . 3  

m
 

o
 2 -7 3 4 

IROWA 1 3 4 2 3 3 4 1 1 

I CAP A 1 4 6 8 

NOZEA 3 2 2 2 

reconstructed very simply. Consider the reconstruction of 

column 2. From the fourth array.- the number of nonzero 

elements in column 2 is given by: 

N0ZEA(2) = 2 

The location of the first element in column 2 is given by: 

ICAPA(2) = 4 

Therefore the nonzero elements of column 2 are given in 

locations 4 and 5 of the first array. This array indicates 

that the values of these elements and their corresponding 

row positions are: 

VALUEA(4) = 1.3 IR0WA(4) = 2 

V A L U E A ( 5 )  = 0 . 5  I R 0 W A ( 5 )  =  3  

In the computer program, AMAT, lAMATl, and IAMAT2 

are used for storage of the matrix of coefficients. The 
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elementary transformation columns are stored in the THAT, 

ITMATl, ITMAT2 matrices, while the weights in the achieve

ment vector are stored in ZMAT, IZMATl, and IZMAT2. A com

plete listing of the computer program, as well as input 

requirements, is given in Appendix B. 

Test Cases 

To test the efficiency of the computer program, several 

test cases were compared against a standard computer pro

g r a m  ( L e e ,  1 9 7 2 ) .  T h e  r e s u l t s  a r e  s u m m a r i z e d  i n  T a b l e  4 . 2 .  

Several comments can be made pertaining to the 

results obtained in the test cases. The first observation 

is that there is a noticeable decrease in the number of 

iterations required to solve a problem using the RGP pro

g r a m .  A  s e c o n d  c o m m e n t  r e l a t e s  t o  t h e  C P U  t i m e .  I n  a l l  

cases,- the CPU time was less for the RGP program than for 

Lee's program. As the sparsity increases, the difference 

in CPU time increases. This is to be expected since the 

RGP program is written to handle sparse matrices. The 

last example in the table is a transportation problem which 

has a high degree of sparsity. A final comment about the 

two programs is the core size needed for the programs. The 

RGP program requires only 128K while Lee's program requires 

2 5 6 K .  



www.manaraa.com

Table 4.2. Comparison of Lee's program and the RGP program 

Number 
of 

Number 
of 

Number 
of Sparsity Lee RGP 

objectives variables constraints Iterations CPU Iterations CPU 

2 2 2 0% 5 0 . 5 2  2 0 . 4 8  

2 2 3 0% 4 0 . 5 5  1 0 . 4 9  

2 3 5 23 . 4% 4 0 . 6 4  2 0 . 5 3  

4 4 7 5 3 . 6 %  10 0 . 88 4 0 . 7 8  

3 12 10 6 6 .  7 %  24 2 . 2 4  16 1 . 6 5  

! 
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CHAPTER V. A CASE STUDY OF THE GOAL 

PROGRAMMING MODEL 

The model formulated in Chapter III will be solved 

using the RGP program developed in Chapter IV. Several 

test cases will be considered with a discussion of the 

results. 

Input Data 

For a 20-year planning horizon, the model developed in 

C h a p t e r  I I I  ( E q u a t i o n s  3 . 2  t h r o u g h  3 . 2 4 )  c o n t a i n s  1 4 , 2 0 4  

constraints and 15,370 decision variables. It was decided 

to reduce the size of the model to a more manageable level. 

The simplifying assumptions were: 

1. The planning horizon would be a 5-year period. 

2. The two initial generating plants (300 mw and 500 

mw) would serve only one substation which provides 

service to only one load area. 

3. Three types of fuel (coal, oil, and gas) are avail

able. 

4. There is only one season in each year. 

5. The lending and borrowing rates are constant 

throughout the planning horizon. 

6. Environmental factors are eliminated. 

With these assumptions, Equations 3.7, 3.12, 3.13, 3.14, 
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3 . 1 5 ,  3 . 1 6 ,  3 . 1 7 ,  3 . 1 8 ,  a n d  3 . 2 3  a r e  n o t  n e e d e d  i n  t h e  

model. As a result, the model now contains 78 constraints 

and 221 decision variables. 

The historical data were obtained from Federal Power 

Commission (1975 and 1978) , Edison Electric Institute (1976) , 

and Le (1977). From these sources, an analysis was made 

on the data to estimate future operating parameters. An 

inflation rate of 8% was assumed to convert all future 

dollars to constant dollars. The results are given in 

T a b l e s  5 . 1  a n d  5 . 2 .  

Priority Levels 

In a goal programming model, there is no single objec

tive function. Instead, the decision-maker must establish 

several goals which are then ranked on an ordinal basis. 

In addition, the decision-maker must set an aspiration 

level for each goal. For the model developed in this re

search, the four goals that were investigated and the 

aspiration level for each goal were: 

1. Generated output of 35,480 mw, 

2. Dividends paid of $5,430,000, 

3. Fuel consumed of 18,985,226 Btu's, and 

4. Cash borrowed of $50,800,000. 

The generated output goal represents the requirement of the 
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Table 5.1. Input data for goal programming models. Part I 

Capital cost 
Available Fuel 

Y ear Demand fuel cost 
, , - 9  ,  ,  ( I Q l l  B t u ' s )  ( $ / k w )  

per unit 
of capacity 

Production 
cost 

($/kw) 

1 3.645 c 25.930 c - 0.013 137 4.95 

o - 0.017 o - 0.025 
g - 8.046 g - 0.008 

2 4.878 c 27.581 c - 0.018 165 6.15 

o — 0.029 o - 0.029 
g - 8.094 g - 0.010 

3 6.528 c 29.592 c - 0.022 225 7 . 34 

o — 0.024 o - 0.036 
g - 8. 207 g - 0.024 

4 8.735 c 32.543 c - 0.022 320 7.90 

o — 0.024 o - 0.039 

9 - 8.352 g - 0.041 

5 11.691 c 32.953 c - 0.025 375 8.54 
o — 0.026 o - 0.042 
g - 8.444 g - 0.045 

CTi 

^ c  -  c o a l ,  o  -  o i l ,  g  -  g a s .  
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Table 5.2. Input data for goal programming model. Part 11^ 

Debt Cash Operating Fuel Working Minimvun 
limit available expenditures expenditures capital balance 

1  2 0 5  3 6 . 8  1 . 2 6 7  4 . 0 9 1  1 2 . 9  2 0 . 5  

2  2 0 5  3 7 . 9  1 . 3 1 5  4 . 2 3 1  1 3 . 2  2 0 . 5  

3 210 39.1 1.420 4.431 13.8 21.0 

4 215 38.2 1.430 4.651 13.5 21.5 

5 215 39.5 1.541 4.848 14.3 21.5 

^All numbers in millions of dollars. 
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utility to satisfy customers' demand while consuming no 

more than 18,985,226 Btu's. The utility would also like 

to pay dividends of $5,430,000 and borrow no more than 

$50,800,000 during the 5-year planning horizon. 

To show the effect of various rankings, four cases 

were investigated. Table 5.3 lists the combinations that 

were considered in this research. 

Table 5.3. Four test cases using four priority levels 

Priority 
Case 1 2 3 4 

1 Energy Fuel Cash Cash 
Generated Consumed Borrowed •Dividends 

2 Energy Cash Fuel Cash 
Generated Dividends Consumed Borrowed 

3 Energy Cash Fuel Cash 
Generated Borrowed Consumed Dividends 

4 Cash Energy Fuel Cash 
Dividends Generated Consumed Borrowed 

Results Using the RGP Program 

The first case was solved using the computer program 

in Lee (1972) while the remaining cases were solved using 

the RGP program. Lee's program took 15.8 minutes of CPU 

time while the RGP program consumed 9.7 minutes, a reduc

tion of 38.6%. This is to be expected since the matrix of 
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coefficients is 83% sparse. 

The results are summarized in Table 5.4. A number 

means that the utility has failed to achieve that particu

lar goal. For example, the priority level 4 in case 1 

r e p r e s e n t s  t h e  c a s h  d i v i d e n d s  a n d  h a s  a  v a l u e  o f  $ 4 1 0 , 2 1 3 .  

This represents the amount by which the utility failed to 

pay dividends of $5,430,000 during the 5-year planning 

horizon. 

A second example is priority level 3 in case 3 which 

represents fuel consumed. The utility has an aspiration 

level of burning 18,985,226 Btu's during the 5-year 

p l a n n i n g  h o r i z o n .  T h e  u t i l i t y  a c t u a l l y  c o n s u m e d  2 4 , 2 5 9 , 3 8 9  

Btu's or a 27.8% increase in the planning value. 

Table 5.4. Results of four cases using the RGP program 

Case 
Priority 

1 0  0  3 5 , 1 0 0 , 5 0 0  4 1 0 , 2 1 3  

2  0  1 , 0 1 1 , 5 1 2  0  4 5 , 1 0 0 , 0 0 0  

3  0  1 , 2 5 3 , 7 9 8  5 , 2 7 4 , 1 6 3  3 1 0 , 4 9 2  

4  0  0  2 , 1 7 6 , 9 3 4  2 5 , 1 6 2 , 7 4 6  
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Similar discussions can be made pertaining to each of 

t h e  t e s t  c a s e s  g i v e n  i n  T a b l e  5 . 4 .  T a b l e s  5 . 5  t h r o u g h  5 . 8  

illustrate how various rankings can effect the timing of 

the decision variables. 

In all cases, the total new plant construction was 1165 

mw. However, the timing and the size of the plant was 

greatly affected by the ranking scheme. Case 2 had the 

l a r g e s t  v a r i a t i o n  i n  p l a n t  s i z e  w i t h  a  l o w  v a l u e  o f  4 0 0  m w  

in year 1 and a high value of 765 mw in year 4. This was 

also the only case in which construction was undertaken in 

year 1. None of the four cases had construction in year 5. 

Customers' demand was satisfied in all cases even with the 

various sizes and timing of the power plants. 

The cash dividend policy was not completely achieved 

in three cases. Case 4, in which cash dividends had the 

highest priority, was the only case which satisfied the 

policy. In the other cases, the shortage range from 

$310,492 (case 3) to $1,011,512 (case 2). It is informa

tive to investigate the variability of the cash dividends. 

The range on the individual cash dividends was a low of 

$269,564 (case 1) to a high of $406,920 (case 4). It should 

be noted that case 4 was the only case in which the total 

dividends paid match the utility's objective. 

The utility's policy of borrowing only $50,800,000 

during the 5-year period was never achieved. Case 3, with the 
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Table 5.5, List of important decision variables, case 1 

Year 
Plant 
size 
(mw) 

Cash 
dividends 
(dollars) 

Cash 
borrowed 
(dollars) 

Fuel 
consumed 

( 1 0 6  B t u ' s )  

1 0 1 , 0 7 6 , 1 0 0  1 0 , 2 4 5 , 6 1 7  3 . 3 9 9  

2 650 8 1 3 , 8 1 4  1 3 , 7 8 3 , 9 3 1  3 . 5 7 0  

3 0 1 , 0 5 0 , 7 5 0  2 5 , 2 4 3 , 9 4 8  3 . 7 8 2  

4 515 9 4 6 , 6 4 9  2 5 , 3 8 0 , 8 4 7  4 . 0 9 1  

5 0 1 , 1 3 2 , 4 7 4  1 1 , 2 4 6 , 1 5 7  4 . 1 4 2  

Table 5 . 6 .  List of important decision variables, case 2 

Year 
Plant 
size 
(mw) 

Cash 
dividends 
(dollars) 

Cash 
borrowed 
(dollars) 

Fuel 
consumed 

( 1 0 ®  B t u ' s )  

1 400 9 3 7 , 1 4 2  2 7 , 6 9 1 , 3 4 5  3 . 3 9 9  

2 0 1 , 0 5 7 , 1 4 3  1 0 , 6 1 5 , 0 3 2  3 . 2 2 2  

3 0 8 5 1 , 7 4 2  2 2 , 5 4 9 , 6 3 3  3 . 6 4 9  

4 7 6 5  7 6 1 , 9 3 7  2 4 , 2 1 7 , 2 4 6  4 . 0 9 1  

5 0 8 1 0 , 5 2 4  10,826,744 4 , 6 2 3  
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Table 5 . 7 .  List of important decision variables, case 3 

Year 
Plant Cash 
size dividends 
(mw) (dollars) 

Cash 
borrowed 
(dollars) 

Fuel 
consumed 

( 1 0 ' 6  B t u ' s )  

1 0 1 , 0 2 6 , 5 1 4  1 0 , 2 4 5 , 1 3 3  3 . 1 2 1  

2 0 1,-101,850 1 3 , 6 7 9 , 1 0 5  4 . 7 5 2  

3 5 7 5  8 5 4 , 4 9 0  1 2 , 1 8 7 , 9 3 8  5 . 2 0 1  

4 590 9 9 8 , 2 4 5  7 , 4 6 9 , 1 1 1  4 . 8 7 9  

5 0 1 , 1 3 8 , 4 0 9  8 , 4 7 2 , 5 1 1  6 . 3 0 5  

Table 5 . 8 .  List of important decision variables, case 4 

Year 
Plant Cash 
size dividends 
(mw) (dollars) 

Cash 
borrowed 
(dollars) 

Fuel 
consumed 

( 1 0 6  B t u ' s )  

1 0 9 5 3 , 1 0 6  1 1 , 2 0 4 , 6 3 6  3 . 6 9 4  

2 6 7 5  1 , 0 0 1 , 4 9 3  2 5 , 1 9 8 , 5 0 4  4 . 2 0 5  

3 4 9 0  8 8 2 , 9 5 8  1 6 , 2 1 3 , 1 0 0  3  =  9 8 4  

4 0 1 , 3 1 0 , 4 5 9  1 3 , 0 0 5 , 4 8 7  5 . 2 0 6  

5 0 1 , 2 8 1 , 9 8 4  1 0 , 3 4 1 , 0 1 9  4 . 0 7 3  
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borrowing limit at priority level 2, was closest to attain

ment of the goal. The difference was only $1,253,798. 

The largest deviation ($45,100,000) occurred in case 2 in 

which the 765 mw power plant was constructed. Case 2 also 

had the largest range ($17,076,313) while case 3 had the 

smallest range ($6,209,994). 

The underachievement of the fuel limitations occurred 

in cases 3 and 4. In case 3, an additional 5,274,163 Btu's 

were required while in case 4 an additional 2,176,934 Btu's 

were required. Even though cases 1 and 2 met the utility's 

policy, the range for case 1 was 746,673 Btu's and the 

range for case 2 was 1,400,317 Btu's. In both cases, the 

largest amount of fuel required in any one year occurred in 

year 5. 

The results from these four cases clearly indicate the 

tradeoffs that a utility must make in long range planning. 

The principle conflict occurs between borrowing funds for 

new plant and maintaining cash dividends at a stable level. 
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chapter vi. summary, conclusions, and 

recommendations 

In this chapter a summary of the problem studied, the 

technique used, and the results obtained in this research 

is presented. Conclusions regarding the desirability of 

the technique and the usefulness of the results are then 

discussed. Finally, recommendations concerning extensions 

of the present investigation are considered. 

Summary 

The decision-maker concerned with long-range planning 

must consider the tradeoffs among the various options. Goal 

programming is a method for handling tradeoffs in a planning 

environment. This methodology allows the decision-maker 

to rank, on an ordinal basis, various objectives and examine 

the conflict among the various goals. 

A goal programming model for an electric public utility 

was developed. For a 20-year planning horizon, the model 

contains 14,204 constraints and 15,370 decision variables. 

The size of the model was reduced to 78 constraints and 221 

decision variables. The four goals investigated in this 

research were; 

1. Generated output, 

2. Cash dividends. 
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3. Fuel consumed, and 

4. Cash borrowed. 

Using a new computer program that was developed in this re

search, four test cases were studied. The results clearly 

showed the tradeoffs that a decision-maker must make and 

the cost for selecting one alternative over a different 

alternative. 

Conclusions 

In light of the investigation just completed, the fol

lowing conclusions may be stated; 

1. Goal programming is a desirable technique for a 

regulated industry facing conflicting objectives. 

The method of goal programming allows the decision

maker to explicitly examine the tradeoffs. 

2. The goal programming methodology demonstrates how 

various rankings can change the timing of the cash 

flow needs of the utility. 

3. The RGP program developed in this research pro

vides preliminary data that indicates the CPU time 

to solve a goal programming model has been reduced^ 

The program is designed to handle sparse matrices. 
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Recommendations 

With regard to this research, some areas for future 

research are: 

1. The ranking of the goals should be investigated 

from several viewpoints. A commission's ranking 

may not be compatible with the utility's ranking. 

2. The model should be expanded to include the testing 

of replacement and depreciation policies. 

3. The RGP program should be tested for increased 

efficiency. Currently, the program and the data 

reside in core. It may be more efficient to only 

read in data as required. 
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APPENDIX A: REVISED SIMPLEX METHOD WITH INVERSE 

IN PRODUCT FORM 

The problem being solved is 

minimize z = cx 

subject to 

Ax = b, x^O 

where 

A  =  [ P ^ , P 2 , . . .  , P J  

is an mxn matrix of rank m, b a mxl vector of constants, 

and c a Ixn vector of objective coefficients. The 

equation 

cx-z = 0 

is added to the system, with -z taken as an additional basic 

variable, here the (m+l)st. Since the simplex is well-

known, focus will be on the product form of the inverse. 

In what follows, it will be convenient to let the cost 

coefficient, c., be the (m+1)st element of P. and c. the 
1 - 11 

(m+1)St element of P^. 

An elementary matrix is defined here as a square matrix 

differing from the identity in only one row or column. 

The inverse basis matrix, B , is stored as a product of 

elementary matrices. Let ^ be the current inverse and 

assume that the new inverse is to be computed by a pivot on 
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_  - 1  
a^g. The following operations are performed on : 

1. Replace row r by l/a^^ and 

2. For i = l,2,...,m+l, i^r replace row i by 

It is easily verified by direct matrix multiplication 

-1 
that multiplying on the left by the following elementary 

matrix performs these operations: 

pi 

E = 

^m+l 

where 

pi = 

column r 

is 

rs 

;  i  =  1 , . . . , m + l , i ^ r  

1  = A  

rs 



www.manaraa.com

87 

That is, 

•B„ = EB;1 

where is the new inverse. If the initial basis is the 

identity matrix, and if k pivot operations have been per-

formed, the inverse at cycle k, , is given by 

with each an elementary matrix. 

Recall that one of the steps in the simplex method is 

the selection of a nonbasic variable to enter the basis. 

The selection of a nonbasic variable is governed by 

where is the updated column and is determined as 

follows 

P. = B-lp. 

substitution yields 

The product c B is called the simplex multipliers on the 
D 

dual variables and is denoted by it. Using the product form, 

the simplex multipliers are given by 
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"1 tt = cgb 

( • • * ( (c^b^k)ek-i) • . • )el 

and the transformed column, , is given by 

pj = b-lp. 

= e^(...(egje^pj))...). 

An important property of elementary matrices is that 

they can be stored in a computer memory by recording only 

the elements of the nonunit vector column and its position 

in the matrix. These columns are often called "eta 

vectors". This is the procedure that was utilized in the 

computer program. 
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appendix b: computer program for revised goal 

programming . 
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3 0  C O N T I N U E  
D O  4 0  K = 2 « N 0 W J  

I Z M A T 2 (  1  , K ) = I Z M A T 2 C 1 , ( K - 1 ) ) + I Z M A T 2 ( 2 , ( K - i ) Î  
4 0  C O N T I N U E  

R E A D ( 5 , 5 0 0 5 )  ( R H S ( I ) , i = 1 , M A X R )  
C  
C  A L L  D A T A  E S  R E A D  A N D  N O W  E C H O  
C  C H E C K  F O R  A N Y  E R R O R S  
C  

W R I T E ( 6 , 6 0 0 1 )  
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W R I T E ( 6 t 6 0 0 2 )  N D A T  A , M A X R . M A X C  
W R I T E < 6 . 6 0 0 3 J  
W R I T E ( 6 . 6 0 0 4 )  ( A M A T C  J ) . J  =  l , N D A T A )  
W R I T E ( 6 . 6 0 0 5 )  ( 1 A M A T I ( J ) . J = 1 . N D A T A )  
W R I T E ( 6 . 6 0 0 6 )  N O B J . N T E R M S  
W R I  T E ( 6 . 6 0 J 7 )  
W K I  T E  ( 6 .  6 0 0  a )  (  Z M A T (  J  )  »  J = 1  •  N T E R M S  )  
D O  4 5  1 = 1 , 2  

W H I T E { 6 » 6 0 0 9 )  ( I  Z M A T  1 ( 1 , J ) , J = 1 « N T E R M S I  
C Q N T I  N U E  

W R I T E ( 6 , 6 0 1 0 )  (  I  , R H S ( I ) ,  1  =  1  , M A X R )  

E S T A B L I S H  T H E  C O U N T E R  F O R  I N I T I A L  B A S I C  
N O N d A S I C  V A H l A d L E S .  T H E  I N I T I A L  B A S I C  
V A R I A B L E S  A R E  T H E  N E G A T I V E  D E V I A T E S .  

I V A R = M A X C  
I N E G = M A X C + M A X R  
I P O  S = M A  X C  +  2 * N A X R  
0 0  5 0  1 = 1 . M A X R  

I  B A S I  C {  !  ) = I V A R  +  I  
C O N T I N U E  

D O  5 5  J = l , i N E G  
I F ( J . L E . I V A R )  T H E N  0 0  

N B A S I C ( J ) = J  
E L S E  D O  

N B A S I C ( J ) = J + M A X R  
E N D  I F  

C O N T I N U E  
M N =  I P Q S - M A X R  

D E T E R M I N E  T H E  A N B S C  M A T R I X  W H I C H  I S  T H E  
A  M A T R I X  F O R  T H E  N O N B A S I C  V A R I A B L E .  

D O  9 0  1 = 1 , M A X R  
D O  S O  

l F ( N O A S i C {  I M ) « L E . I V A R )  T H E N  0 0  
L M = I A M A T 2 ( 1 , I M )  
L N = I A M A T 2 ( 1  , I M ) > I A M A T 2 ( 2  ,  I M ) - I  
0 0  7 0  M E = L M , L N  

Ï F ( l A M A T l ( M E ) . E Q . I )  T H E N  D O  
anbsc( i sim)=amat{me) 

G O  T O  8 0  
E N D  I F  

C O N T I N U E  
A N B S C l  I  ,  I M  )  =  0 . 0  
G O  T O  8 0  
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E L S E  D a  
I F ( N B A S I C ( I  M ) . L E . l N E G )  T H E N  J O  

I F ( { N B A S I C ( I M ) - I V A R ) . E O . I )  T H E N  D Û  
A N t 3 S C (  I  #  I M  )  = 1  .  0  

E L S E  D O  
A N B S C C I . I M  ) = 0 . 0  

E N D  I F  
E L S E  D O  

I F t ( N B A S I C ( I M ) - I N E G ) . E Q « I )  T H E N  D O  
A N B S C (  I  .  I M  )  =  -  I  , 0  

E L S E  D O  
A N 8 S C ( I . I M ) = 0 . 0  

E N D  I F  
E N D  I F  

E N D  I F  
8 0  C O N T I N U E  
9 0  C O N T I N U E  

C  
C  
C  
C  D E T E R M I N E  T H E  T W G F  A N D  T w N O F  M A T R I C E S ®  
C  
C  

1 0 0  D O  2 6 0  1 = 1 . N O B J  
D O  2 0 0  I B - l i M A X R  

I F ( I B A S I C ( I B ) . L E . I V A R )  T H E N  D O  
T W O F ( I , I B ) = 0 . 0  
G O  T O  2 0 0  

E L S E  D O  
I F ( I B A S I C ( I B ) . L E . l N E G )  T H E N  D O  

K K K  =  - 1 * (  I B A S I C ( I B )  -  I V A R )  
E L S E  D O  

K K K = I B A S I C ( I B ) - I V A R  
E N D  I F  
D O  1 5 0  K I = l , N T E R M S  

I F { I Z M A T 1 { I . K I ) . E Q . I . A N D . I Z M A T l C 2 . K 1 ) •  
• E Q . K K K }  T H E N  D O  

T W O F ( I , I B ) = Z M A T ( K I )  
G O  T O  2 0 0  

E L S E  D O  
I F ( I Z M A T l ( 1 , K I ) . E O . I . A N D . I Z M A T l (  

• 2 t K n . E Q . K K K )  T H E N  D O  
T W O F ( I  * I B )  =  Z M A T ( K I i  
G O  T O  2 0 0  

E N D  I F  
E N D  I F  
T W O F ( I , I B ) = 0 . 0  

1 5 0  C O N T I N U E  
E N D  I F  

2 0 0  C O N T I N U E  
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do 240 jn=l,mn 
if(nbasic(jn ) .le.ivak) then do 

t*nof(1,jn)=0.0 
go to 240 

else dj 
I F ( N B A S I C ( J N ) . L E . I N E G )  T H E N  0 0  

K L = - 1 * ( N B A S I C ( J N ) - I V A R )  
E L S E  o n  

kl=nbasic(jn)-ineg 
end if 
D O  2 3 0  L M = l , N T E R M S  

I F  t  I Z M A T U  I  , L M )  . E Q .  I  . A N D . I Z M A T :  ( 2 . L M )  .  
* E O . K L )  T H E N  0 0  

twnof( i * jn) = zmat(lm) 
G O  T O  2 4  0  

E L S E  D O  
I F ( I Z M A T 1 ( 1 . L M ) . E Q . I . A N D . I Z M A T l ( 2 , L M j .  

• E Q . K L )  T H E N  D O  
T W N U F (  I . J N )  =  Z M A T ( L M  )  
G O  T O  2 4 0  

E N D  I F  
E N D  I F  
T W N O F C  Î , J N ) = 0 . 0  

2 3 0  C O N T I N U E  
E N D  I F  

2 4 0  C O N T I N U E  
2 6 0  C O N T I N U E  

C  
C  
c 
c T H I S  S E C T I O N  U P D A T E S  T H E  O B J F C N  
C  M A T R I X  A N D  T H E N  R E P E A T S  T H E  P R O C E S S  B Y  
C  R E T U R N I N G  T O  S T A T E M E N T  1 0 5 .  
C  
c 

S U M = 0 « 0  
D O  3 3 0  1 = 1 . N O B  J  
D O  3 2 0  J = 1 . M N  
D O  3 Î Q  K = i î M A X R  

S U * = 5 U M f T W ù F i i , K i * À N B S C ( K , J î  
3 1 0  C O N T I N U E  

objfcn( i.j ) = sum-twnof(i,j) 
5 U M = 0 . 0  

3 2 0  C O N T I N U E  
3 3 0  C O N T I N U E  

C  
C  

D O  3 7 0  J K = i , N O a j  
A C H M T ( J K ) = a . O  

0 0  3 5 0  J M = l . M A X R  
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A C H M T ( J K ) = A C r i M T ( J K ) f T W O F ( J K , J M j * R H S ( J M )  
3 5 0  C O N T I N U E  
3 7 0  C O N T I N U E  

C  
C  T H I S  S T A K T S  T H E  M A I N  L O O P  O F  T H E  
C  P R O G R A M .  C H E C K  O N  T H E  M A X I M U M  N U M B E R  O F  
C  I T E R A T I O N S  A L L O W E D .  D E T E R M I N E S  T H E  
C  A P P R O P I A T E  P R I O R I T Y  L E V E L  T O  M I N I M I Z E .  
C  
C  

4 0 0  M A = I P O B  
0 0  4 1 0  I = M A , N O a j  

I F (  A C H M T  (  I  )  . G T  . 0  )  T H E N  D O  
I P Q B = I  
G O  T O  4 1 3  

E N D  I F  
4 1 0  C O N T I N U E  

C  
c 
C  S E L E C T  P I V O T  C O L U M N  A N D  E N T E R I N G  V A R I A B L E  
C  I F  Z C V A L  S T A Y S  A T  Z E R O  T H E  P R I O R I T Y  
C  L E V E L  C A N  N O T  B E  S A T I S F I E D .  
C  
C  

4 1 5  I F (  I P O B . E Q .  I )  T H E N  D O  
Z C V A L  =  0 .  0  
D O  4 2 0  N = 1 , M N  

I F  ( U B J F C N d  s N )  . G T . Z C V A L )  T H E N  D O  
Z C V A L = O a J F C N ( l . N )  
I P C N = N  

E N D  I F  
4 2 0  C O N T I N U E  

E L S E  D O  
Z C V A L = 0 . 0  
D O  4 2 5  N = 1 , M N  

I F ( 0 B J F C N ( I P 0 8 , N ) . G T , Z C V A L )  T H E N  D O  
M I = I P O B - I  
D O  4 2 3  N I = l . M I  

i F i O B J F C N i i  N I . N )  . L T . O . O î  T H E N  D O  
G O  T O  4 2 5  

E N D  I F  
4 2 3  C O N T I N U E  

Z C V A L = 0 B J F C N ( I P O B . N )  
I P C N = N  

E N D  I F  
4 2 5  C O N T I N U E  

I F C Z C V A L . E Q . O . O . A N D . I P O B . E Q . N O B J )  G U  T O  7 0 0  
I F ( Z C V A L . E Q . O . O )  T H E N  D O  

I P 0 B = I P 0 B + 1  
G O  T O  4 0  0  
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E N D  I F  
E N D  I F  
I F (  I T E M  . G T . M A X I )  G U  T O  8 0 0  

C  
C  
C  
c 
c 
c 

S E L E C T  P I V O T  W O i f t  A N D  L E A V I N G  V A R I A B L E  
P I T E  V A L U E  l b  D E T E R M I N E D  

R A T  1 0  =  1  6 . 5 E  1 2  
D O  4 3 0  I = I t M A X R  

I F ( A N B S C (  I ,  I P C N ) . o T . O . O )  T H E N  D O  
I F { R H S (  I  ) / A N B S C {  I  .  I P C N ) . L T . R A T I O )  T H E N  D O  

R A T I 0 = R H 5 ( I » / A N B S C ( I , I P C N )  
I P R W = I  

E N D  Î F  
E N D  I F  

4 3 0  C O N T I N U E  
I F ( R A T I Q . L T . 0 . 0 »  G U  T O  8 5 0  

P I T E = A N B S C (  I P R 4 » I P C N )  
I T M A T Z I 3 . I T E R ) = I P R a  
D O  4 5 0  I K = 1 , M A X R  

I F d K . E Q .  I P R U I )  T H E N  D O  
T M A T ( L A S T + 1 ) = 1 . O / P I T E  
Î T M A T 2 ( 2 - I T E R ) = I + I T M A T 2 ( 2 , I T E R )  
I  r  M A T  I  C  L A  S T  f  1  )  —  I  K  
L A S T = L A 3 T + l  

E L S E  D O  
I F I A N B S C 4 I K .  I P C N J . N E . O . O )  T H E N  D O  

T M A T C L A S T + l ) = - A N B S C Î I K . I P C N Î / P I T E  
I T M A T 2 ( 2 . I T E R ) = 1 + I T M A T 2 ( 2 . I T E R )  
I T M A T 1 ( L A S T + l ) = I K  
L A S T = L A 5 T + 1  

E N D  I F  
E N D  I F  

4 5 0  C O N T I N U E  

C  
C  
c 
c 
c 

U P D A T E  T H E  L I S T  O F  B A S I C  A N D  N 0 N 8 A S I C  
V A R I A B L E S  

I T E M P = I B A S I C ( I P R W )  
I B A S I C C  I P R W ) = N d A S I C (  I P C N )  
N B A S I C (  I P C N  )  =  I T E M P  

C  
C  
C  
C  
C  
C  

F O R  T H E  P I V O T  C O L U M N  D E T E R M I N E  T H E  
E L E M E N T A R Y  T R A N S F O R M A T I O N  C O L U M N .  
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D O  4 6 0  I C a L = 2 . I T E «  
I T M A T 2 (  I .  I C 0 L )  =  I T M A T 2 (  I , <  l C O L - 1 ) i  +  

*  :  T M A T 2 ( 2 ,  ( I C O L - l  )  )  
4 6 0  C O N T I N U E  

r" 

c 
C  S W A P  N E W  N O N B A S I C  C O L U M N  F O R  O L D  3 A S I C  C O L U M N  
C  
c 

D O  4 9 0  I = 1 , M A X R  
I F ( N B A S I C ( I P C N ) . L E . I V A H )  T H E N  0 0  

L M = I A M A T 2 ( 1  . N B A S I C (  I P C N )  )  
L N = I A M A T 2 ( 1 t N B A S I C C I P C N ) ) +  

* l A M A T 2 { 2 , N B A S I C (  I P C N ) ) - l  
D O  4 7 0  M E = L M , L N  

I F d A M A T K M E )  . E Q . I )  T H E N  D O  
A N B S C d  ,  I P C N  ) = A M A T  (  M E  )  
G U  T O  4 9 0  

E N D  I F  
4 7 0  C O N T I N U E  

A N B S C d  ,  I P C N  >  =  0 . 0  
G O  T O  4 9 0  
E L S E  D O  

I F ( N b A S I C d P C N >  . L E .  I N E G )  T H E N  D O  
I F ( ( N B A S I C ( I P C N ) - I V A R ) . E Q . I )  T H E N  D O  

A N 8 S C { I , I P C N ! - i . O  
E L S E  0 0  

A N B S C ( I , I P C N ) = 0 . 0  
E N D  I F  

E L S E  D O  
I F ( { N B A S I C ( I P C N ) - I N E G ) . E Q . I )  T H E N  D O  

A N B S C l i . I P C N ) = - l . 0  
E L S E  D O  

A N B S C ( I , I P C N ) = 0 . 0  
E N D  I F  

E N D  I F  
E N D  I F  

4 9 0  C O N T I N U E  
C 
C  
C  T H I S  S E C T I O N  U P D A T E S  T H E  A N B S C  M A T R I X .  T H E  
C  A C H M T  A N D  R H S  V E C T O R S »  T H I S  I S  A C C O M P L I S H  
C  B Y  M U L T I P L Y I N G  T H E  C O L U M N S  B Y  A  S E R I E S  O F  
C  E L E M E N T H A R Y  T R A N S F O R M A T I O N S .  
C  
C  

D O  5 2 0  I J = l , M A X R  
I C =  I T M A T 2 ( 3 , I T E R  î  
J I  =  I T M A T 2 ( 1  .  I T E R  )  
J K = I T M A T 2 { 2 , 1  T E R  ) - l  
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jl=ji+jk 
0 0  5 1 5  J M = J [ , J L  

I F d T M A T l  (  J M J . E Q . I J )  T H E N  0 0  
T E M P T ( I J J = T M A T ( J M )  
G O  T O  5 2 0  

E N D  I F  
5 1 5  C O N T I N U E  

T E M P T  ( I J ) = 0 . 0  
5 2 0  C O N T I N U E  

0 0  5 6 0  J = 1 , M A X W  
I F C J . E Q . I C )  T H E N  D O  

D O  5 3 0  J K = 1 , M N  
T E M P A i  J , J K ) = T E M P T ( J ) » A N 8 S C ( J , J K )  

5 3 0  C O N T I N U E  
E L S E  D O  
D O  5 4 0  J K = l , M N  

T E M P A ( J , J K ) =ANaSC{J . J K l + T E M P T C J ) *  
•  A N B S C d C . J K  »  

5 4 0  C O N T I N U E  
E N D  I F  

5 6 0  C O N T I N U E  
D O  5 9 0  L I = l , M A X R  

I F ( L I . E Q . I C )  T H E N  D O  
A M T(Ln = R H S l L I )  * T E M P T ( L I  >  

E L S E  D O  
A M T ( L I ) = R H S ( L I ) + T E M P T ( L I ) * R H S ( I C I  

E N D  I F  
5 9 0  C O N T I N U E  

D O  6 0 0  I = 1 . M A X R  
R H S ( I ) = A M T (  I )  

6 0 0  C O N T I N U E  
0 0  6 4 0  I = 1 , M A X R  
0 0  6 4 0  J = 1 , M N  

A N B S C (  I f  J ) = T E M P A (  I ,  J )  
6 4  0  C O N T I N U E  

C  
C  
C  
C  

1  T E H = I T E R  +  1  
G O  T O  1 0 0  

C  
C  W R I T E  F I N A L  R E S U L T S  
C  

7 0 0  W R I T E ( 6 , 6 3 0  1 )  
W R I T E ( 6  , 5 3 0 2 )  
D O  7 2 0  I = 1 , M A X R  ,  

-  I F { I B A S I C (  I  »  . L E . I V A R I  T H E N  0 0  
W R I T E ( 6 , 6 3 0 5  I  I .  I B A S I C I I ) , R H S ( I 1  
E L S E  D O  
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I F  (  I d A S t C C  1  )  . L E  . I N E G )  T H E N  D O  
writeiô .ô303î i,ibasic( i>,rhs(i) 

else do 
W R I T h ( 6 , 6 3 0 4 )  I , I B A S I C ( I ) , d H S ( I )  

E N D  I F  
E N D  I F  

7 2 0  C O N T I N U E  
W R I T E f 6 . 6 3 0 6 »  
D O  7 6 0  K = I , N O H J  

wrrte(ô»63u7) k.achmtik) 
7 6 0  C O N T I N U E  

I T £ R = Î T E R - l  
W R I  T E ( 6  s 6 3 0 8 )  I T E R  
G O  T O  1 0 0 0  

8 0 0  W R I T E ( 6 , 6 4 0 1 )  
G O  T O  1 0 0 0  

0 5 0  W R l T E i 6 « 6 4 0 2 )  
C  
C  
C  
C  F O R M A T  S T A T E M E N T S  
C  
C  

5 0 0 1  F 0 R M A T ( 4 I 5 Î  
5 0 0 2  F O R Y A T ( I 5 , F 1 0 . 3 , I 5 )  
5 0 0 3  F Q R M A T O I S j  
5 0 0 4  F O R M A T ( ï 5 t F 1 0 . 3 ,  2 I 5 J  
5 0 0 5  F O R M A T C F I O . 5 )  
6 0 0 1  F O R M A T ( • 1 • , l O X , 1 2 H P R Q d L £ M  D A T A )  
6 0 0 2  F O R M A T ( * 0 ' , 1 0 X , 3 4 H N U M 8 E H  O F  N 0 N 2 E R 0 S  I N  T H E  A  M A T R I X .  

•  I  7 . / • 0 *  f l O X , 3 0 H N U M B E R  O F  R O W S  I N  T H E  A  M A T R I X , 1 1 1 ,  
» / « 0  *  ,  l O X , 3 3 H N U M B E R  O F  C O L U M N S  I N  T H E  A  M A T R I X , I B )  

6 0 0 3  F O R M A T ! • 0 * . l O X , 6 3 H r H E  O R I G I N A L  D A T A  F O R  T H E  M A T R I X  
* 0 F  C O E F F I C I E N T S  I S  A S  F O L L O W S , / ' 0 ' , I 0 X , 2 8 H T H E  F I R S T  
* W O W  I S  T H E  E L E M E N T , / ' 0 ' , 1 0 X , Ô 0 H T H E  S E C O N D  R O W  
• I D E N T I F I E S  T H E  P A R T I C U L A R  R O W  F O R  T H E  E L E M E N T )  

6 0 0 4  F O R M A T t « O » , ( B F I O . b , / '  • ) )  
6 0 0 5  F O R M A T ! ' 0 * . ( 8 1 1 0 , / '  M J  
6 0 0 6  F O R M A T "  0 « . 1 0 X , 2 y H N U M 8 E R  O F  O B J E C T I V E  F L 1 N C Î Î  O N S  -  1 1 2  t  

* / : 0 : , 1 0 X . 4 1 H N U m B E R  u F  T E R M S  I N  T H E  O B J E C T I V E  F U N C T I O N  
•  ,  1 7  )  

6 0 0 7  F O R M A T ! ' 0 ' , I O X , 7 0 H T H E  O R I G I N A L  D A T A  F O R  T H E  M A T R I X  
* 0 F  O B J E C T I V E  F U N C T I O N S  Î S  A S  F O L L O W S , / « 0 »  , 1  O X , 5 4 H  
» T H E  F I R S T  R O W  I S  T H E  W E I G H T  I N  T H E  O B J E C T I V E  F U N C T I O N  
* S , / * 0 ' « 1 0 X , 7 6 H T H E  S E C O N D  R O W  I D E N T I F I E S  T H E  
• P A R T I C U L A R  O B J E C T I V E  F U N C T I O N  F O R  T H A T  W E I G H T )  

6 0 0 8  F O R M A T ! * 0 ' , ( 8 F 1 0 . 5 / '  • > )  
6 0 0 9  F O R M A T ! «  0 »  ,  ! 8 I I  0 / 8  » ) )  
6 0 1 0  F O R M A T ! ' 0 ' . 1 0 X , 4 8 H T H E  O R I G I A N L  R E S O U R C E  R E Q U I R E M E N T  I S  

•  A S  F O L L O W S , / ' O '  ,  !  I O X , 3 H R O W ,  I 4 , F 1 0 . 0 )  )  
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6 3 0  1  P O R M A K ' 1 ' , 3 4 H T H E  O P T I M A L  S O L U T I O N  I S  A S  F O L L O W S i  
6 3 0 2  F O R H A K  ' O ' t  l O X  t  I  5 H B A S I C  V A R I A B L E S , 2 4 X , 4 H T Y P E , 2 4 X ,  

* b H V A L U E )  
6 3 0 2  F O H M A Ï C ' 0 ' . 2 4 X , 1 5 H B A S I C  V A R I A B L E S , 2 4 X • 4 H T Y P E . 2 4 X , 5 H V A L  
6 3 0 3  F O R M A T * ' 0 ' ,  1 3 1  . 3 1 X , J H N E G , I  3 . 2 1 X  , F 1 2 . 2 )  
6 3 0 4  F O R M A T (  « O * . 1 3 1 , 3  I X . 3 H P 0 S  .  1 3 # 2 1 X  , F  1 2 . 2 )  
6 3 0 5  F O R  y A T (  • 0 • .  1 3 1  , 3 1 X , 1 H X , I  5 1 2 1 X , F  1 2  . 2 )  
6 3 0 6  F O R M A T ! " 0 " , 3 3 X . 1 4 H P R i a R I T Y  L E V E L , 3 3 X , 5 H V A L U E )  
6 3 0 7  F 0 W M A T ( ' 0 ' , 1 4 1 , 3 3 X , F 1 2 . 2 )  
6 3 0 8  F O R M A T ( ' 0 ' , 3 / H T H E  N U M B E R  O F  I T E K A T I G N S  R E Q U I R E D  

• W A S  . 1 5 )  
6 4 0 1  F G R M A T t  »  1 ' ,  l O X ,  3 d H M A X I M U M  N U M B E R  O F  I T E R A T I O N S  

• E X C E E D E D . )  
6 4 0 2  F D R M A T C • 1 • , 3 6 H R A T I Ù  T E S T  F A I L E D ,  P R O B L E M  U N B O U N D E D )  
1 0 0 0  S T O P  

E N D  
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